Visions of ECS beyond 2030

Analysis of Key Messages from the LTV and the 5 KDT Workshops

Sven Rzepka, EPoSS Scientific Council
Visions of ECS beyond 2030
Joint Workshop of the 3A Scientific Councils on 14 Sep 21

Agenda

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOPIC</th>
<th>SPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30</td>
<td>Introduction by the moderator: workshop guide and agenda</td>
<td>Patrick Cogez, AENEAS</td>
</tr>
<tr>
<td>09:35</td>
<td>Main ideas under development in the Long Term Vision Chapter</td>
<td>Dimitrios Serpanos, Chair, ARTEMIS Scientific Council</td>
</tr>
<tr>
<td>10:00</td>
<td>Inputs as derived from the KDT Workshops</td>
<td>Sven Rzepka, Chair of EPoSS Key Technology working group</td>
</tr>
<tr>
<td>10:10</td>
<td>Future of Computing</td>
<td>Heike Riel, IBM Research</td>
</tr>
<tr>
<td>10:25</td>
<td>Integrated Photonics</td>
<td>Dries Van Thourhout, Ghent University</td>
</tr>
<tr>
<td>10:40</td>
<td>Flexible Electronics</td>
<td>Ralf Zichner, Fraunhofer ENAS/ OE-A</td>
</tr>
<tr>
<td>10:55</td>
<td>Smart Networks and Services long term ECS requirements</td>
<td>Alexandros Kaloxylos, 5G Infrastructure Association</td>
</tr>
<tr>
<td></td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:20</td>
<td>Linking HW and SW for AI</td>
<td>Elisa Vianello, CEA-LETI</td>
</tr>
<tr>
<td>11:35</td>
<td>TransContinuum Initiative</td>
<td>Michael Malms, mm-it4you</td>
</tr>
<tr>
<td>11:50</td>
<td>Open Source HW and RISC-V</td>
<td>Luca Benini, University Bologna and ETHZ</td>
</tr>
<tr>
<td>12:05</td>
<td>Q&A and collecting inputs from the audience</td>
<td></td>
</tr>
<tr>
<td>12:25</td>
<td>Wrap up by moderator</td>
<td>Patrick Cogez, AENEAS</td>
</tr>
</tbody>
</table>

Jointly organized by the 3As (Aeneas, Insight, EPoSS), the workshop had 170 registrants.
Heike Riel, *IBM Research*

Future of Computing

- **Key drivers**
 - Energy Efficiency
 - Data Explosion and AI
 - Security and Privacy

- **Whole array of research threads**
 - Towards perfect analog computing
 - Improve materials
 - Compensate imperfections with device architecture and algorithms
 - Technology for AI hardware
 - Traditional CMOS with algorithms and architectures for approximate computing
 - In-memory computing with algorithms and arrays for analog memory elements
 - Biologically plausible networks
 - Quantum computing
 - Many potential qubit technologies: superconductors, trapped ions, engineered defects, spin, quantum dots, topological devices
 - Challenges: cryo-electronics, nanoscale physics, engineering of nanostructures, exploitation of new phenomena

© 2021 IBM Corporation
• Areas of needed progress in SoI and SiN PIC platforms
 • Light source integration
 • Phase modulation (electronic and thermal)
 • Very low loss linear and non-linear waveguides also in SiN
 • Integrated detectors also in SiN
 • Optical isolators / circulators
 • Non-volatile programmable functions
 • Integration with electronics
Ralf Zichner, *Fraunhofer ENAS/ OE-A*
Hybrid, Flexible and Printed Electronics

- Circular economy of flexible electronics
 - Green production and green products

- Process technology
 - Towards more robust, lightweight, flexible and stretchable electronic systems
 - Printed flexible Q-dots and microLED
 - Seamless integration of printed hybrid electronics systems on top of any 3D object

- Applications
 - Printed flexible medical patches to detect body vital parameters, disease patterns and show aging rate

Courtesy of OE-A
Alexandros Kaloyxlos, 5G Infrastructure Association
Smart Networks and Services

• Fully distributed AI/ML solutions for network virtualisation
 • Cloud, deep edge, end devices…

• Transceivers for higher spectral efficiency, reduced power consumption, high density digital logic, chip-package-antenna co-design

• Human friendly radio systems - Safety
 • Handle increased density, higher frequency ranges, control EM fields

• Self-powered and energy harvesting devices
Elisa Vianello, CEA-LETI

Linking Hardware and Software for AI

• Need for Frugal Edge AI accelerators
• Brain-inspired computing
 • Massively parallel
 • Co-location of computation and memory
 • Resistive memory
 • Match circuit time scale with input signal dynamics
 • Spike coding
 • Embracing the statistical nature of emerging memories
 • Low precision neural networks
 • Bayesian neural networks
• Frugal AI devices - Combination of Algorithms, Technologies and Circuit Solutions

Courtesy of CEA-LETI
Michael Malms, *mm-it4you*

Trans Continuum Initiative

- From deep edge to cloud to HPC
- Case studies of digital twins in various settings
 - Industry, urban air pollution, extreme earth phenomenon predictions
- Research treads identified so far
 - Need for increase in computational power
 - New architectures: Quantum annealing
 - New paradigms: Stochastic computing
 - Automated digital twin development and application
 - Derive physics from data, train intelligence
 - Automatic detection of gaps between system and digital twin
 - AI/ML developments
 - Reinforcement learning
 - Distributed computing, distributed AI/ML solutions
 - Dynamic adjustment (of edge system) vs. backend
 - Overcome data transfer bottleneck

Extremes prediction & the Digital TransContinuum

Technical dimension

The TransContinuum Initiative: exploiting the combined benefit of digital technologies for the prediction of weather and climate extremes

By Peter Bauer, Marc Ouyarten, Michael Malms

The Extremes Prediction Use Case

Dealing responsibly with extreme events requires not only a drastic change in the ways society addresses its energy and population crises. It also requires a new capability for using present and future information on the Earth system to reliably predict the occurrence and impact of such events. A breakthrough in Europe's predictive capability can be made manifest through science and technology solutions delivering in yet unseen levels of predictive reliability with real value for society.

Courtesy of the TransContinuum Initiative
Luca Benini, *University Bologna and ETHZ*

Open Source HW and RISC-V

- Open source hardware as an innovation facilitator
- Requires access to advanced EDA tools with licencing compatible with open-source hardware
Findings from the 5 KDT workshops
Technology Fields

Quantum Technologies:
Q-Sensing, Q-Computing, Q-Communication

AI Technologies:
Hierarchical Architecture (AI at the edge ... SoS), Trustable / Certifiable, Digital Twins (full-scale ... very compact)

Autonomous Systems:
Multifunctional Integration and Functional Electronics, Trustworthiness (Reliability, Safety, Self-X, Security, Robustness)

Materials: Highly performant, Efficient fabrication, Inherently green, Hazard-free, Recyclable, Bio-based, Lifecycle optimized
Findings from the 5 KDT workshops

Application Fields

Mobility: Electrical, connected & autonomous vehicles

Energy: Multimodal bidirectional sustainable generation, distribution and use – across Europe

Digital Industry: Industry 4.0, Collaborative Robots

Agrifood & Natural Resources: Fully autonomous systems for smart farming, biodegradable materials, sustainable farming, animal welfare

Health & Wellbeing: Individualized / personalized medicine & care for inclusive self-determined life without dependence

Digital Society: Comprehensive services with full privacy
Summary: Joint Vision Beyond 2030

1. Foundational Technology Layers
 - Open Source HW as innovation enabler
 - Programmable photonic ICs
 - Autonomous Systems: Multifunctional Integration and Functional Electronics
 - Wafer-scale heterogeneous silicon photonics
 - New materials, devices, technology, infrastructure including measurement

2. Cross-Sectional Technologies
 - 1.1 Process Technology, Equipment, Materials and Manufacturing
 - 1.2 Components, Modules and Systems Integration
 - 1.3 Embedded Software and Beyond
 - 1.4 System of Systems

3. ECS Key Application Areas
 - AI HW from approximate to analogue computing
 - Frugal AI devices: Algorithms, technologies & Circuit solutions
 - Quantum Technologies: Q-Sensing, Q-Computing, Q-Communication
 - Smart Networks: Trustable AI everywhere, efficient use of spectrum
 - Trustable & Sustainable Electronics
 - Digital Industry: Industry 4.0, Collaborative Robots
 - Health & Wellbeing: Individualized/Personalized medicine & care
 - Digital Society: Comprehensive services with full privacy
 - Materials: Highly performant, Life-cycle optimized
 - Energy: Multi-modal bidirectional
 - Agrifood & Natural Resources: Smart, autonomous, sustainable farming, bio-degradable materials, animal welfare

4. Long Term Vision
 - Mobility: Electrical, connected & autonomous vehicles