Hercules in a nutshell

High-Performance Real-time Architectures for Low-Power Embedded Systems

- Jan 2016 to Dec 2018
- Budget: ~3.3M€

Industrial Advisory Board
- Provide feedback/advices
- Porsche, Finmeccanica, BMW, NVIDIA, Continental, Autoliv...
What do we do?

HERCULES
IN 2 MINUTES
Climbing the *Power Wall*

Many-core platforms
- Next-generation embedded systems
- Hundreds of G(FL)OPs, ~ 10W
- Commercial-Off-The-Shelf components

Are they suitable for safety critical/real-time systems?

Not yet!

The keyword: predictability
- Provide the correct result....at the correct instant
- Trade average for **worst case performance**
Hercules use-cases

- Outdoor valet parking system
 - Autonomous driving in structured setting
 - Real-time obstacle detection and avoidance
 - Path planning and parking maneuver

- Computer Vision for Aerial Application
 - Online machine learning for object tracking
 - Exacopter drone with guidance, navigation and control
 - Obstacle detection and avoidance
Hercules value chain

WHY ARE WE GOOD?
The Hercules toolchain

Programming model(s) abstraction

Hypervisor abstraction

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

E.G., 4 cortex A57 + 2 Denver

“Big.LITTLE-like” core complex

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA

“Big.LITTLE-like” core complex
E.g., 4 cortex A57 + 2 Denver

ISA subdomain #1

ISA subdomain #2

GPU management / firmware

GPU/FPGA
..in other words..

A complete e2e toolchain to exploit many-core platforms in predictable manner

1. Analytic framework/methodology + supporting tools
2. Compiler + runtime for parallel prog. Models
3. RT-Operating System (Erika Enterprise + RT-Linux)
4. Compliancy with legacy SW (e.g., AUTOSAR)
5. NVIDIA-specific closed component... will be part of next NVIDIA drivers
Exploitation plan

WHAT DO WE DO WITH THIS?
Hercules assets exploitation

@consortium level
- HERCULES "Operating System"
- Partner-specific: MM, PITOM & Airbus
- IAB exploitation

@individual level
- Questionnaire
- Commercial: UNIMORE's Drivebox
- "Public": MASA + H2020 Class, Maserati ADAS project...
Exploitation activities, form and market domain

<table>
<thead>
<tr>
<th>Exploitable results</th>
<th>Leading partner</th>
<th>Exploitation form</th>
<th>Market domain</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Use Case</td>
<td>MM</td>
<td>Technology transfer</td>
<td>Automotive</td>
<td>4-5</td>
</tr>
<tr>
<td>Avionics (B1&B2) Use Case</td>
<td>AB</td>
<td>Technology transfer</td>
<td>Aerial</td>
<td>4-5</td>
</tr>
<tr>
<td>PREM scheduling</td>
<td>CTU</td>
<td>Technology transfer License agreement Publications</td>
<td>Automotive Industrial automation, Military</td>
<td>4</td>
</tr>
<tr>
<td>Compiler modules</td>
<td>ETHZ</td>
<td>Technology transfer Publications</td>
<td>ICT-Energy Efficiency New Parallel Programming</td>
<td>5</td>
</tr>
<tr>
<td>Runtime library</td>
<td>ETHZ</td>
<td>Technology transfer Publications</td>
<td>ICT-Energy Efficiency</td>
<td>5</td>
</tr>
<tr>
<td>FPGA</td>
<td>ETHZ</td>
<td>Technology transfer Publications</td>
<td>New Parallel Programming</td>
<td>4</td>
</tr>
<tr>
<td>Hypervisor</td>
<td>EVI</td>
<td>Direct industrial Use Technology transfer</td>
<td>Automotive Industrial automation</td>
<td>5</td>
</tr>
<tr>
<td>ERIKA Enterprise</td>
<td>EVI</td>
<td>Direct industrial Use</td>
<td>Automotive Industrial automation</td>
<td>6</td>
</tr>
<tr>
<td>AUTOSAR RTE</td>
<td>EVI</td>
<td>Direct industrial Use</td>
<td>Automotive Industrial automation</td>
<td>4-5</td>
</tr>
<tr>
<td>Computer Vision applications</td>
<td>PIT</td>
<td>Direct industrial Use</td>
<td>Automotive Avionics Industrial automation, Precision Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>HW central electronics module</td>
<td>MM</td>
<td>Direct industrial use Technology transfer</td>
<td>Automotive</td>
<td>4</td>
</tr>
</tbody>
</table>

Lisbon – November 21st, 2018
IP ownership

<table>
<thead>
<tr>
<th>Exploitable results</th>
<th>Leading partner</th>
<th>Foreground ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNIMORE</td>
<td>CTU</td>
</tr>
<tr>
<td>HERCULES Integrated Framework</td>
<td>UNIMORE</td>
<td>X</td>
</tr>
<tr>
<td>Automotive Use Case</td>
<td>MM</td>
<td></td>
</tr>
<tr>
<td>Avionics Use Case (B1&B2)</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>PREM scheduling</td>
<td>CTU</td>
<td>X</td>
</tr>
<tr>
<td>Compiler modules</td>
<td>ETHZ</td>
<td></td>
</tr>
<tr>
<td>Runtime library</td>
<td>ETHZ</td>
<td></td>
</tr>
<tr>
<td>FPGA</td>
<td>ETHZ</td>
<td></td>
</tr>
<tr>
<td>Hypervisor</td>
<td>EVI</td>
<td>X</td>
</tr>
<tr>
<td>ERIKA Enterprise</td>
<td>EVI</td>
<td>X</td>
</tr>
<tr>
<td>AUTOSAR RTE</td>
<td>EVI</td>
<td></td>
</tr>
<tr>
<td>Computer Vision applications</td>
<td>PIT</td>
<td></td>
</tr>
<tr>
<td>HW central electronics module</td>
<td>MM</td>
<td></td>
</tr>
</tbody>
</table>
...next?

(@UNIMORE)
The "HiPeRT Autonomous Driving Project"

Expensive: $60k
Bulky: Multiple servers and batteries
Power hungry: up to 5kW

Cheaper: ~1k
Small: Shoe box
Low power: less than 20W
The DriveBox

Example: The DriveBox
- Kit for semi-autonomous driving
 - (pedestrian avoidance, highway autopilot, ...)

- Safer driving at low SWaP
 - \ (~4-5k€
 - "A shoe box"
 - Less than 20W

- Optimized for power efficient platforms
 - Using open-source parts of the Hercules framework
Scale-out to smart cities

- The advent of autonomous vehicles challenges big data analytics systems
- The distributed nature of data sources makes current data analytics systems not suitable for smart cities

Two challenges
i. quick and reactive response
ii. a thorough and more computationally intensive feedback
Distributed awareness system
A real urban laboratory of one square-kilometre equipped with multiple (IoT) devices (e.g., smart cameras, traffic scanner and counter, smart parking, weather conditions) and network connectivity (4G, LTE)

Massive amounts of information processed in a data server to jointly cooperate for a so-called distributed awareness in the city area

Provides the necessary vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-cloud (V2C) connectivity
EU-funded research

1. Intelligent traffic management, smart traffic lights and road signals
 - "Green routes", e.g., for ambulances, fire-fighters and police
 - Reduce fuel consumption and CO2 emission

2. Cybersecurity
 -

3. Advanced driving assistance to highly connected cars
 - VRU avoidance
 - Smart traffic lights
 - Driver monitoring
Contacts

email
info@hercules2020.eu

twitter
@hercules2020_eu

http://hercules2020.eu