Industrial View on the Future of Edge AI

Holger Schmidt
25.11.2022
Hardware for Edge AI

› Motivation:
 - Existing edge hardware is not powerful and smart enough to enable the digitalization trends in all
 application fields and to support the handling of the challenges of the 21st century

› Current state:
 - Overall performance of current edge device is very limited
 - Mature AI acceleration mainly in the cloud
 - Most AI accelerator for edge device on prototype level or only for simple applications

› Way forward:
 - Investigating new technologies for efficiently processing different applications on devices at the
 edge (e.g. Spiking Neuronal Networks)
 - Developing better periphery components for the accelerators
 - Exploring and developing new components for AI accelerators e.g. new memory technologies
 - Realize better tool chains
 - Reduce size and energy consumption of AI accelerators and improve their performance at the
 same time
Going to the extreme Edge

› State of art AI is too big for some applications

› Extreme Edge / tinyML advantages:
 – Reduction of the amount of send data leading to the saving of energy
 – Improved real time capabilities
 – Add functionality to devices in an efficient manner

› Further reduction of the size of algorithms and AI accelerator hardware are necessary

› tinyML applications:
 – Basis for an efficient IoT
 – Smart sensors: key-word spotting
 – Hardware monitoring, data filtering
 – And more …
Motivation:
- Trust is an important aspect for the adaptation of AI
- Understanding of how neuronal networks process data is limited

Methods for interpreting and explaining AI are important for the certification, maintenance, safety and trust of AI-based products

Specialized hardware is necessary for running safety critical AI similar to IFAG AURIX™ that is used for safety critical general software execution

Only with such methods and hardware, AI can be integrated into safety sensitive applications such as robots or medical devices
Distributed AI for complex Applications

› Current focus is on single model solutions for applications

› Challenge:
 - Complex applications such as self-driving cars or multi purpose robots cannot be solved by one model

› Methods for efficiently combining different types of AI models at the edge and in the cloud into one system

› These systems require approaches to efficiently train, maintain and monitor the joint AI they are based on

› Edge hardware should include the accelerators for different kinds of AI to support these systems
Other Challenges

- Tracing the history of an AI model will be essential for maintenance and determination of responsibility in case of damage producing events such as car accidents
 - History entails, e.g., data sets used for training, companies involved in the “manufacturing” of the model and updates
 - Blockchain could be a helpful tool in solving this challenge

- Edge AI is prone to attacks especially adversarial attacks
 - e.g. adversarial patches on traffic signs manipulating sign classification algorithms in a car

- Realization of analog AI to replace building blocks like state-machines in hardware to make devices more performant and efficient

- Reliability of edge AI in face of events that were not considered during training needs to be improved to enable the full potential of the IoT

- Many more challenges besides the ones shown need to be solved to solve the challenges of 21st century and to enable applications that will improve the lives of humans