

Towards a local connect and compute paradigm

Phone software ecosystem

Evolved software ecosystem

Wide area – local area

Strategic venues

Factory floors Offices Classrooms Hospitals Retail

Home

Deployment challenges

Laws of nature difficult to combat

- Free space
- Diffraction
- Penetration
- Pencil beams

28GHz to 140GHz = +7dB loss

Link budget \rightarrow antenna gain \rightarrow narrow beams

Propagation measurements

- Similar reflection losses for 28 and 140GHz
- Noticeably higher penetration loss for 140GHz
- Similar excess loss in an open office for 28 and 140GHz, but difficult to get coverage in closed meeting rooms @ 140GHz

Open office coverage

B-E. Olsson et al., "Radio Propagation in an Office Environment at 140GHz and 28GHz", European Conference on Antennas and Propagation (EuCAP), 2021

Office scenario 1				
	28GHz	140GHz		
Penetration: Drywall A	3-7	11-15		
Penetration: Wooden door A	8	>50		
Penetration: Glass in wooden door A	1.5	12		
Penetration: Wooden door B	15	>50		
Penetration: Indoor glass wall A	1.9	15		
Penetration: Curtain (thin)		0.4		
Penetration: Sweatshirt		0.8		
Penetration Cardboard box		3.3		
Penetration: aluminum foil		>50		
Penetration: Computer monitor		>50		
Office scenario 2				

	28GHz	140GHz
Penetration: Drywall B	6	17
Penetration: Drywall B + heavy curtain	8	30
Penetration: Big indoor glass wall	3	8.5
Penetration: Indoor glass wall B	5	17
Penetration: Drywall B + whiteboard	25	35

Office scenario 1				
	28GHz	140GHz		
Reflection: Drywall A	6.5	9-11		
Reflection: Wooden door A	10	12-15		
Reflection: Glass in wooden door A	3.5	6.5		
Office scenario 2				

	28GHz	140GHz
Reflection: Whiteboard on wall	0	0
Reflection: Drywall B	6	9
Reflection: Big indoor glass wall	7	8

Open area with conference rooms

Coverage

- Open area very similar for all 3 frequencies
- Higher loss in conference rooms for 58 and 143 than 28GHz
- Very similar excess loss in the conference rooms @ 58 and 143GHz

Hardware challenges

"Not a question whether something is possible or not - more when things become business viable"

- Transmit power
- Sensitivity
- Phase noise
- Data converters
- Building practice

L. Belostotski, et al., "Low-noise-amplifier (LNA) performance survey"

H. Wang et al., "Power Amplifiers Performance Survey 2000-Present"

Example

Distance: 200m

Bandwidth: 10GHz

• SNR: 30dB (includes margin)

Antenna element gain: 3dB

• TX power: 5dBm @ 100GHz, and $\sim f^{-3}$

NF: 9dB @ 100GHz, with excess noise factor ~ f

Base station antennas = 10x # device antennas

To cover all directions several panels must be used

Understand the development cycle

How many technology changes can one afford until the market window is jeopardized?

Fredrik Tillman | 25-11-2022

Understand the development cycle

Understand the development cycle

...and not forget about heterogenous integration, package, antennas, cooling etc.

Fredrik Tillman | 25-11-2022

Imagine Possible